A Shot Boundary Detection Method for News Video Based on Rough-Fuzzy Sets
نویسندگان
چکیده
With the rapid growing amount of multimedia, content-based information retrieval has become more and more important. As a crucial step in content-based news video indexing and retrieval system, shot boundary detection attracts much more research interests in recent years. To partition news video into shots, many metrics were constructed to measure the similarity among video frames based on all the available video features. However, too many features will reduce the efficiency of the shot boundary detection. Therefore, it is necessary to perform feature reduction for every decision of shot boundary. For this purpose, the rough-fuzzy operator based on rough-fuzzy sets for feature reduction and the dissimilarity function is proposed. According to the characteristics of news scenes, shot transition can be divided into three types: cut transition, gradual transition and no transition. The efficacy of the proposed method is extensively tested on more than 2 h of news programs and 98.0% recall with 96.6% precision have been achieved.
منابع مشابه
Unsupervised video-shot segmentation and model-free anchorperson detection for news video story parsing
News story parsing is an important and challenging task in a news video library system. In this paper, we address two important components in a news video story parsing system: shot boundary detection and anchorperson detection. First, an unsupervised fuzzy -means algorithm is used to detect video-shot boundaries in order to segment a news video into video shots. Then, a graph-theoretical clust...
متن کاملShot Boundary Detection Method for News Video
It is very important to detect shot boundary accurately and quickly in a large number of news video data. Therefore, we proposed a new method with dual-detection model. The method is divided into two stages, i.e. predetection and re-detection. In the pre-detection stage, the uneven blocked differences based on the feature of human vision are presented and used in adaptive binary search to detec...
متن کاملDiagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets
With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملAutomatic Story Segmentation for Spoken Document Retrieval
We have been working on speech retrieval based on Cantonese television news programs. Our video archive contains over 20 hours of news programs provided by a local television station. These programs have been hand-segmented into video clips, where each clip is a self-contained news story. The audio tracks in our archive are indexed by Cantonese speech recognition. This is integrated with a vect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005